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Abstract. The equation for the sum of BFKL pomeron fan diagrams is rederived by a direct summation
and solved numerically for rapidities y ≤ 50. At high rapidities, y > 20, the resulting cross-sections for the
scattering of a longitudinally polarized qq̄ pair on the nucleus cease to depend on its transverse dimension
and tend to a constant limit of 0.1768R2

A, which corresponds to scattering of a color dipole on a black disk.
Thus the unitarity is restored and the singularity in the j plane is reduced to a simple pole at j = 1. The
nuclear structure function at small x behaves as Q2 ln(1/x). The gluon density found has a soliton-like
form in the log k space: its form is close to Gaussian, independent of rapidity, the center moving towards
higher log k with a nearly constant velocity as the rapidity increases.

1 Introduction

In the framework of the color dipole model of Mueller [1,
2] it follows that in the high-color limit Nc → ∞ the scat-
tering on a heavy nucleus is exactly described by the sum
of fan diagrams constructed of BFKL pomerons, each of
them splitting into two [3]. This sum seems to be unitary
by itself. It is important that no splitting into three or
more pomerons, as introduced in [4], occurs, although for-
mally they give contributions of the same order. Because
of this fact, once the splitting vertex is known, the con-
struction of the amplitude for the interaction with the
nucleus becomes straightforward, reducing to summing
BFKL pomeron fan diagrams. This procedure has been
well known since the times of the old Regge–Gribov the-
ory [5].

In the perturbative QCD a pioneering step was taken
also many years ago by Gribov, Levin and Ryskin, who
summed fan diagrams in the double log approximation
and wrote their well-known non-linear GLR equation [6].
In the framework of the BFKL dynamics, the necessary
tool for constructing fan diagrams is the corresponding
triple pomeron vertex, which was found in the color dipole
approach for Nc → ∞ by Mueller and Patel [2] and in the
s-channel unitarity approach for any number of colors by
Bartels and Wuesthoff [7]. The equivalence of both results
was shown in [8].

The equation for the sum of BFKL fan diagrams with
this splitting vertex was written by Balitsky [9] in his orig-
inal operator expansion formalism and by Kovchegov [10]
in the color dipole framework (with a somewhat unconven-
tional form of the coupling to the target). Its perturbative
solution in the region of small non-linearity (outside the
saturation region) was studied in [11]. Asymptotic esti-
mates of the solution were presented in [12].

In the present paper we first rederive the BFKL fan
diagram equation by direct summation using the standard
form of the pomeron–target coupling. It has the form of a
simple (and elegant) evolution equation in rapidity y for
a wave function φ(y, q) in the momentum space:

∂φ(y, q)
∂y

= −Hφ(y, q) − φ2(y, q), (1)

where H is the BFKL Hamiltonian for the so-called semi-
amputated function (a similar form was also obtained in
[11]).

In spite of its tantalizing simplicity, (1) does not seem
to allow for an analytical treatment except by perturba-
tive methods, not valid in the most interesting region of
strong non-linear effects, or by qualitative asymptotic es-
timates. The bulk of this paper is correspondingly devoted
to its numerical analysis. We numerically study the evo-
lution of the wave function in the rapidity, starting from
an appropriately chosen initial function. The results are
then used to find the structure function of the nucleus
at small x = e−y and various virtualities Q2. Our results
show that for a heavy nucleus the longitudinal part of
the structure function saturates at x → 0 to a univer-
sal function F (as)

2L (Q2), independent of the nucleus atomic
number but strongly dependent on Q2 in the whole range
of Q2 ≤ 105 (GeV/c)2 explored. In fact F (as)

2L (Q2) is just
proportional to Q2. This reflects the behavior of the scat-
tering cross-section of a longitudinally polarized qq̄ pair
on the nucleus: at very small x it becomes independent
of both the pair size and x. The latter property indicates
that unitarity is restored and the leading singularity in the
complex momentum j is reduced to a simple pole at j = 1.
Note that the limiting cross-section is in accordance with
the picture in which the longitudinally polarized photon
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with a certain probability splits into color dipoles, which
then scatter on the nucleus as on a black disk. For the lead-
ing transverse part of the structure function this probabil-
ity result turns out to be infinite. Due to this fact both the
cross-section and the structure function continue to grow
at x → 0 approximately as ln(1/x). These results are in
agreement with predictions made in [11,12].

As to the gluon density, we have found it to have a
Gaussian shape as a function of ξ = ln k with a cen-
ter at ξ0 ∝ y. So with the growth of rapidity it propa-
gates towards higher momenta, practically preserving its
form, very much like a soliton wave. Obvious limitations
on computing time and memory allow one to follow its
movement up to momenta not higher than of the order of
1010 GeV/c. However, we expect that this behavior per-
sists in the model until arbitrary high values of momenta.
As a result, at any fixed value of k the density eventually
goes to zero as y → ∞. In this sense we have the maximal
saturation of the density possible.

The paper is organized as follows. In Sect. 2 we present
a derivation of the BFKL fan diagram equation by a direct
summation. Sect. 3 is devoted to the numerical solution of
(1). In Sect. 4 the nuclear structure function and gluon
density are calculated. Section 5 contains our conclusions.
In the Appendix we compare our BFKL fan diagram equa-
tion with the Kovchegov one [10].

2 Fan diagram equation for the BFKL
pomerons

We start with a single scattering contribution to the for-
ward ampitude for the interaction of the projectile particle
with a nucleus.

In the BFKL framework, at fixed impact parameter b,
it has a well-known form:

A1(y, b) = isg4AT (b)
∫

d2rd2r′ρ(r)G(y, r, r′)ρN (r′). (2)

Here ρ and ρN are the color densities of the projectile
and the target nucleon respectively. The function G is the
forward BFKL Green function [13]:

G(y, r, r′) =
rr′

32π2

+∞∑
n=−∞

ein(φ−φ′)

×
∫ ∞

−∞

dνeyω(ν)

[ν2 + (n− 1)2/4][ν2 + (n+ 1)2/4]

× (r/r′)−2iν , (3)

where φ and φ′ are the azimuthal angles and

ω(ν) = 2(αsN/2π)(ψ(1) − Reψ(1/2 + iν)) (4)

are the BFKL levels. Due to the azimuthal symmetry of
the projectile color density one may retain only the term
with zero orbital momenta n = 0 in (3). Separating the
projectile part, the single scattering term may be written
in the form

A1(y, b) = 2is
∫

d2rρ(r)Φ1(y, b, r), (5)

where

Φ1(y, b, r) =
1
2
g4AT (b)

∫
d2r′G(y, r, r′)ρN (r′). (6)

The double scattering contribution has been calculated in
[14]. In the limit Nc >> 1 one finds

A2(y, b) = −is
g2Nc

4π3

∫
d2rρ(r)

∫ y

0
dy2

×
∫ 3∏

i=1

d2riδ
2(r1 + r2 + r3)

r21∇4
1

r22r
2
3
G(y − y2, r, r1)

×Φ1(y2, b, r2)Φ1(y2, b,−r3). (7)

Representing A2 in terms of Φ2 similarly to (5) we find

Φ2(y, b, r) = −g
2Nc

8π3

∫ y

0
dy2

∫ 3∏
i=1

d2riδ
2(r1 + r2 + r3)

×r
2
1∇4

1

r22r
2
3
G(y − y2, r, r1)Φ1(y2, b, r2)Φ1(y2, b,−r3). (8)

The whole set of fan diagrams will evidently be summed
by the equation which is graphically illustrated in Fig. 1:

Φ(y, b, r) = Φ1(y, b, r) − g2Nc

8π3

∫ y

0
dy2

×
∫ 3∏

i=1

d2riδ
2(r1 + r2 + r3)

r21∇4
1

r22r
2
3
G(y − y2, r, r1)

×Φ(y2, b, r2)Φ(y2, b,−r3). (9)

The impact parameter b appears here only as a parameter
and the dependence on it will be implicit in the following.
In terms of Φ the total forward scattering amplitude on
the nucleus will be given at fixed b by

A(y, b) = 2is
∫

d2rρ(r)Φ(y, b, r). (10)

One can rewrite (9) as an evolution equation in y. To this
end we represent Φ as an integral over the ν’s similar to
(3):

Φ(y, r) =
∫

dνr1−2iνΦ(y, ν).

Then from (9) we find

Φ(y, ν)

=
g4

64π2(ν2 + 1/4)2
eω(ν)y

∫
d2r′r′1+2iνρ(r′)AT (b)

− g2Nc

32π5(ν2 + 1/4)2
eω(ν)y

∫ y

0
dy2e−ω(ν)y2

×
∫ 3∏

i=1

d2riδ
2(r1 + r2 + r3)

×r
2
1∇4

1

r22r
2
3
r1−2iν
1 Φ(y2, r2)Φ(y2,−r3). (11)



M. Braun: Structure function of the nucleus in the perturbative QCD with Nc → ∞ 339

✁
✁

✁
✁

❆
❆
❆
❆❆

✁
✁

✁
✁

✁

❚
❚
❚

❏
❏

❏
❏
❏ ✫✪

✬✩� � �

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

�
�

��

❡
❡

❡❡

Φ

Φ

Φ Φ

Fig. 1. The equation summing fan diagrams. Lines represent pomerons

Multiplying both parts by e−ω(ν)y and taking the deriva-
tive in y we obtain(

∂

∂y
− ω(ν))Φ(y, ν) = − g2Nc

32π5(ν2 + 1/4)2

×
∫ 3∏

i=1

d2riδ
2(r1 + r2 + r3)

× r21∇4
1

r22r
2
3
r1−2iν
1 Φ(y, r2)Φ(y,−r3). (12)

Returning to the r space we take into account that

ω(ν)r1−2iν = −Ĥr1−2iν , (13)

where Ĥ is the BFKL Hamiltonian [13]. Then (12) trans-
forms into(

∂

∂y
+ Ĥ

)
Φ(y, r) = −g

2Nc

8π3

∫ 3∏
i=1

d2riδ
2(r1 + r2 + r3)

×r
2
1∇4

1

r22r
2
3
G(0, r, r1)Φ(y, r2)Φ(y,−r3). (14)

Using

r21∇4
1

r2
G(0, r, r1) =

1
2π2rr1

+∞∑
n=−∞

ein(φ−φ1)
∫ ∞

−∞
dν(r/r1)−2iν

= δ2(r − r1), (15)

we simplify (14) to the form(
∂

∂y
+ Ĥ

)
Φ(y, r) = −g

2Nc

8π3

∫ 3∏
i=2

d2riδ
2(r + r2 + r3)

× r2

r22r
2
3
Φ(y, r2)Φ(y,−r3). (16)

The initial condition is determined from (9) to be

Φ(y, r)y=0 = Φ0(r) (17)

with

Φ0(r) =
1
2
g4AT (b)

∫
d2r′G(0, r, r′)ρ(r′). (18)

Except for the initial condition and different variables,
(16) coincides with the one constructed by Kovchegov in
the color dipole approach in [10] (see the Appendix).

Now we go to the function

φ(y, r) =
1
r2
Φ(y, r) (19)

and pass to the momentum space. For φ(y, q) (16) reads
(
∂

∂y
+

1
r2
Ĥr2

)
φ(y, q) = −g

2Nc

8π3 φ(y, q)φ(y, q), (20)

where we have used that φ(y, q) in fact depends only on
|q|, which follows from the initial condition

φ0(y, q)y=0 =
∫

d2r

r2
e−iqrΦ0(r), (21)

with Φ0 given by (18) and depending only on |r| due to
the azimuthal symmetry.
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The Hamiltonian r−2Ĥr2 which appears on the left-
hand side is the standard forward Hamiltonian for the
semi-amputated functions

1
r2
Ĥr2 = H =

g2Nc

4π2 [ln q2 + ln r2 − 2(ln 2 + ψ(1))]. (22)

Indeed the eigenfunctions of Ĥ, Φn,ν(r) = r1−2iνeinφ, go
over into the eigenfunctions of H after division by r2.

This brings us to nearly the final form of our equation(
∂

∂y
+H

)
φ(y, q) = −g

2Nc

8π3 φ
2(y, q). (23)

It remains only to appropriately rescale H, φ and y to
obtain the BFKL fan diagram equation in the final form
(1). We introduce

H =
g2Nc

4π2 H̃, ỹ =
g2Nc

4π2 y,

and φ(ỹ, q) = 2πφ̃(ỹ, q), (24)

where
H̃ = ln r2 + ln q2 − 2(ln 2 + ψ(1)). (25)

The equation for φ̃ takes the form (1)(
∂

dỹ
+ H̃0

)
φ̃(ỹ, q) = −φ̃2(ỹ, q) (26)

with the initial condition

φ̃(ỹ, q)ỹ=0 =
g4AT (b)

4π

∫
d2rd2r1

1
r2
eiqrG(0, r, r1)ρN (r1).

(27)

3 Numerical solution
of the BFKL fan diagram equation

To solve numerically (26) we first transform the BFKL
Hamiltonian H to more convenient variables. In the mo-
mentum space one can write the action of H on a function
φ(q) as

Hφ(q) = −2
∫ ∞

0
kdk

×
[
φ(k) − (q2/k2)φ(q)

|q2 − k2| +
q2

k2

φ(q)√
4k4 + q4

]
. (28)

We transform it to variables u, v which take values in [0, 1]:

q = exp[(M1 +M2)u−M1],

k = exp[(M1 +M2)v −M1],
(29)

where q, k are in GeV/c and M1(2) is a lower (upper) in-
tegration limit in ln k. Then (28) goes into

Hφ(u) = −2(M1 +M2)
∫ 1

0
dv

[
φ(v) − f(u− v)φ(u)

|f(u− v) − 1|

+
φ(u)√

1 + 4f−2(u− v)

]
, (30)

where
f(u) = exp[(M1 +M2)u]. (31)

Now we discretize the interval [0,1] in u and v into n
equidistant points u0, u1, · · · , un and v0, v1, · · · , vn to con-
vert the evolution equation (26) into a set of n ordinary
1st order non-linear differential equations in y. This set
of equations can be solved by standard methods. We used
the simplest 2nd order Runge–Kutta algorithm. The stan-
dard values of n and of the number of iterations to evolve
in two units of ỹ were 800. We have studied the evolution
of φ(y, q) from the initial value at y = 0 up to ỹ = 10. The
(fixed) value of the strong coupling αs = g2/4π has been
chosen to be 0.2. With this choice our maximal rapidity
is around 50.

An evident difficulty which one meets are the values
of Hφ at endpoints u0 and un, at which the introduced
cutoffs make the results unreliable. To overcome this dif-
ficulty we calculated Hφ at these points by extrapolation
from the neighbouring points. The stability of this proce-
dure was checked by comparing the results for double and
quadruple values of n.

The initial function is determined by the color density
of the nucleon ρN (r) according to (27). To simplify our
calculations we have taken the Yukawa form for ρN (r):

ρN (r) =
µ

2π
e−µr

r
, (32)

where µ = 1/0.7 fm has the meaning of an inverse nucleon
radius. This choice may look a bit arbitrary, but our re-
sults show that with growing rapidity the system quickly
forgets not only the form but even the absolute magni-
tude of ρN , so that the solution becomes independent of
the initial function and appears to be governed only by
the internal dynamics of (26) itself.

Doing the integrations over r and r1 in (27) and over
ν inside the BFKL Green function (3) we find for q > µ

φ̃0(q)q>µ = B
µ2

q2

×
{
1 − µ

q
√
π

∑
n=0

(−1)n
(
µ2

q2

)n
Γ (1/2 + n)
(n+ 3/2)2

}
(33)

and for q < µ

φ̃0(q)q<µ = B

{
1
4

[ (
2 ln

q

µ
+ ψ(3/2) − ψ(1) − 1

)2

+ ψ′(3/2) + ψ′(1) + 1
]

− q2√
πµ2

∑
n=0

(−1)n

×
(
q2

µ2

)n
Γ (5/2 + n)

(n+ 2)(n+ 1)3

}
, (34)

where the dimensionless coefficient

B =
g4

16π
AT (b)
µ2 (35)
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carries all the information about the nucleus. Its maximal
value with αs = 0.2 is about 0.12 for the central scatter-
ing on lead (b = 0). The asymptotic behavior of φ0(q) at
q → ∞ and q → 0 is governed by the first terms in (33)
and (34), which come from the poles of the BFKL Green
functions at ν = ±i/2:

φ0(q) ∼ 1/q2, q → ∞, φ0(q) ∼ log2 q, q → 0. (36)

We have checked that our results practically do not change
if the complicated function which multiplies B in (33) and
(38) is substituted just by ln2(q/(µ + q) with the same
asymptotic behavior (36).

The initial function depends on the form of the nucleus
profile function T (b). For our numerical calculation we
have chosen

T (b) = 2
√
R2

A − b2/VA (37)

corresponding to a finite nucleus of radius RA and volume
VA with a constant density. We have taken RA = A1/3R0
with R0 = 1.2 fm.

Our results for φ(q) for two values of B = 0.12 and
0.02, corresponding to a central and very peripheral col-
lisions off lead, respectively, are presented in Figs. 2 and
3. One observes that the solution φ at rapidities ỹ > 2
evolves to a very simple and universal form, practically
independent of the initial function. Crudely speaking it
linearly falls with ξ = ln k until it meets the x-axis; from
where it does it stays equal to zero. The slope of the falling
part is exactly equal to 1, so that very crudely

φ(ξ) = ξ1(y, b) − ξ, for ξ < ξ1(y, b),
φ(ξ) = 0, for ξ > ξ1(y, b). (38)

The value of ξ1(y, b) and hence the interception point with
the x-axis grow linearly with y, so that with the growth
of y the picture simply shifts to the right. In reality the
curve for φ of course has no break: the two straight lines
of which it is formed join smoothly in the vicinity of ξ1. As
will become clear later, the physically important region is
precisely this vicinity, where φ is not trivial.

The results for φ(k) do not depend on the chosen cut-
offs, provided they are taken to cover the region around
the interception point ξ1. Otherwise the evolution stops
as soon as ξ1 touches the upper cutoffM2. So if one wants
to study evolution up to high values of y the upper cutoff
should be taken correspondingly high. In our calculations
we chose M1 = 10 and M2 = 30, having verified that
further raising of either M1 or M2 does not change the
results.

In conclusion we find that φ does not possess any finite
limit as y → ∞ so that (26) does not lead to any satu-
ration of the wave function φ at high rapidities, contrary
to naive expectations. However, in the next chapter we
shall see that such a saturation indeed occurs for physical
quantities. The point is that the function φ by itself has
no physical meaning. It is its derivatives which matter.

4 Nuclear structure function
and the gluon density

The nuclear structure function is obtained in the standard
manner as

F2(x,Q2) =
Q2

πe2
(σT + σL), (39)

where the σT,L are the total cross-section for the scattering
on the nucleus of a virtual photon with transversal (T)
or longidunal (L) polarization. Both cross-sections can be
found from the imaginary part of the forward scattering
amplitude (10). In terms of φ̃ we find

σT,L = 4π
∫

d2bd2rρT,L(r)r2φ̃(y, r, b). (40)

Here we explicitly indicated the dependence of φ on the
impact parameter; the ρT,L(r) are the well-known color
densities of the virtual photon split into a qq̄ pair (see e.g.
[15]). With massless quarks

ρT (r) =
e2NcZ

2

8π3

∫ 1

0
dα(α2 + (1 − α)2)ε2K2

1(εr) (41)

and

ρL(r) =
e2NcZ

2

2π3 Q2
∫ 1

0
dαα2(1 − α)2K2

0(εr), (42)

where ε2 = Q2α(1 − α) and Z2 is a sum of squares of
quark electric charges in units e.

Passing to momentum space we find

σT,L = 4π
∫

d2b
d2q

(2π)2
φ̃(q, y, b)wT,L(q), (43)

where
wT,L(q) =

∫
d2rr2ρT,L(r)eiqr. (44)

A straightforward calculation leads to the following ex-
pressions for wT,L(q). For the transverse density one finds1

wT (q) =
e2NcZ

2

8π2

∫ 1

0
dα(α2 + (1 − α)2)

× ∇2
q[(q

2/2 + ε2)J(q, ε)], (45)

where

J(q, ε) =
2

q
√
q2 + 4ε2

ln

√
q2 + 4ε2 + q√
q2 + 4ε2 − q . (46)

The longitudinal density wL is given by the same expres-
sion with the substitutions

α2 + (1 − α)2 → α(1 − α), q2/2 + ε2 → −4ε2.

1 An error in this formula led to some erroneous conclusions
about the y behavior of the structure function in the original
version
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units π/αsN) for central collisions on lead (B = 0.12,
(359))
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Fig. 3. φ as a function of momentum at different
y (in units π/αsN) for peripheral collisions on lead
(B = 0.02, Eq.(35))

With the numerical values found for the function φ in the
range 0 ≤ ỹ ≤ 10 we evaluated the nuclear structure func-
tion of lead (A = 207) for various values of Q2 between
3 and 105 (GeV/c)2. The results are most instructive for
the cross-section σL for the scattering of a longitudinally
polarized virtual photon on the nucleus. In Figs. 4 and 5
we present it (with e2 → 1) as a function of y at fixed Q2

and as a function of Q2 at fixed y respectively (in GeV−2).
From Fig. 4 one clearly sees saturation in rapidity: for any
value of Q2 the cross-section tends to the same limit of
228.8 (GeV/c)−2 = 0.1768R2

A as ỹ goes beyond 5. The re-
sulting constant cross-section is evidently consistent with
the unitarity restrictions. In terms of the complex angular
momentum j our results indicate that the original cut at
j > 1 is reduced to a simple pole at j = 1. Figure 5 il-
lustrates the unusual behavior in Q2 which sets in at high
y: instead of going down as 1/Q in the standard BFKL
approach, the cross-section becomes independent of Q2 to
a very high precision.

These results for the longitudinal cross-section can be
conveniently interpreted in terms of scattering of color

dipoles off the nucleus. The density ρL(r), appropriately
normalized, can be interpreted as a probability distribu-
tion for the longitudinal photon to split into color dipoles
of transverse dimension r. The normalization factor

D =
∫

d2rρL(r) =
e2NcZ

2

12π2 = 0.028145e2

can be considered as the total probability for the pho-
ton to split into dipoles. Then the dipole–nucleus cross-
section is found by dividing σL by the factor D, which
gives 8131.1 (GeV/c)−2, independent of Q2, that is, of the
dipole dimension. This value exactly equals 2πR2

A, corre-
sponding to scattering off a black disk.

The transverse part of the structure function does not
admit this interpretation, due to the fact that ρT(r) is not
normalizable. As a result both the cross-section and the
structure function do not saturate at large y but continue
to grow nearly linearly in y. This is illustrated in Figs. 6
and 7 where the total structure function (including the
much smaller longitudinal part) is shown as a function of
x = e−y and Q2, respectively.
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We finally come to the gluon density. Although strictly
speaking it is not a physical quantity, its properties have
been much discussed recently in connection with its sat-
uration for a large nucleus [16]. It can be related to our
function φ via the standard expression for the structure
function in its terms (see e.g [14])

F2(x,Q2) =
g2Q2

π3Ne2

∫
d2bd2r[ρT (r) + ρL(r)]F (x, r, b),

(47)
where

F (x, r, b) =
∫

d2k

(2π)2k4 k
2

×∂xG(x, k
2, b)

∂k2

(
1 − e−ikr

) (
1 − eikr

)
, (48)

and
∫
d2b(∂xG(x, k2, b)/∂k2) is up to a factor the gluon

density in the momentum space:

∂N(l)
∂2l

=
1
π

∂N(l)
∂l2

=
1
π

∫
d2b
∂xG(x, l2, b)

∂l2
. (49)

100

1000

10000

100000

1e+06

1e+07

1e+08

1e-25 1e-20 1e-15 1e-10 1e-05 1

F
_2

A

x

10000

1000

100

10

Q^2 (GeV/c)^2
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In the following we shall study the double density in
momentum and impact parameter, which is just
∂xG(x, k2, b)/∂k2. Comparing (47), (48) with the corre-
sponding expression in terms of φ, which follows from (39)
and (40) we find a relation

F (x, r, b) =
4N
πg2

r2φ̃

(
ln

1
x
, r, b

)
. (50)

Taking a Fourier transform of (48) and neglecting the term
proportional to δ2(k) we obtain

∂xG(x, k2, b)
∂k2 =

2N
πg2

k2∇2
kφ̃

(
ln

1
x
, k, b

)
. (51)

This is the desired relation between our function φ and
the gluon density in the combined momentum and impact
parameter space.

Applying k2∇2
k to the function φ we thus find the

gluon density up to a trivial numerical factor as is evident
from (51)( ∼ 0.76 with αs = 0.2). The function h(k) =



344 M. Braun: Structure function of the nucleus in the perturbative QCD with Nc → ∞

k2∇2
kφ̃(y, k, b) for different values of y and B = 0.12 and

0.02 is shown in Figs. 8 and 9. Its form at different y turns
out to be quite remarkable. As one observes, at any given
rapidity the found density has the same roughly Gaussian
in shape in the variable ξ = ln k, centered at the point
ξ = ξ0(y) very near to ξ1 at which the straight line (38)
crosses the x-axis (see Sect. 2). With the growth of y the
distribution moves to the right with a nearly constant ve-
locity practically preserving its form. Approximately the
distribution can be described by

h(k) = h0e−a(ξ−ξ0(y))2 , (52)

where h0 and a are practically independent of y and ξ0(y)
linearly grows with it:

h0 � 0.3, a � 0.3 ξ0(y) = ξ00 + 2.23ỹ. (53)

The only quantity which clearly depends on the initial dis-
tribution is the starting position ξ00, so that for different
initial functions the picture in Figs. 8 and 9 shifts along
the ξ-axis as a whole.

Evidently at a given value of k the density stays always
limited, irrespective of the form of the initial distribution
(and of the atomic number A, in particular). In this sense
we have saturation as discussed in [16]. However with the
growth of y the strongly peaked density moves away to-
ward higher values of k so that the density at a fixed
point tends to zero at high values of rapidity. We thus
have “supersaturation”: with y → ∞ the gluon density at
an arbitrary finite momentum tends to zero.

Comparing Figs. 8 and 9 one can see how the memory
about the initial distribution (except for ξ00) is gradually
erased in the course of the evolution in y. For a very pe-
ripheric collison off lead (B = 0.02) at the initial stages of
the evolution the density is correspondingly much smaller
than for a central collision (B = 0.12). However, already
at ỹ = 2 the form of the distribution is practically indis-
tinguishable from the central collision, the only remaining
difference being the shift along the ξ-axis.

5 Conclusions

The BFKL fan diagram equation has been solved numer-
ically in the large range of rapidities up to y = 50. The
main results are the following.

The idea that the fan diagrams themselves satisfy the
unitarity condition has been supported by the fact that
the cross-sections found for the scattering of a qq̄ pair
off the nucleus tend to a constant value at high rapidi-
ties. Since the found cross-sections do not increase with
energy, the leading j plane singularity turns out to be a
simple pole at j = 1. The limiting cross-sections prove to
be universal: they do not depend on Q2, that is, on the
transverse dimension of the qq̄ pair, nor on the initial color
distribution inside the nucleon. Their dependence on the
target nucleus thus reduces to a scale factor R2

A. Physi-
cally they correspond to scattering of a color dipole off a
black disk.

The nuclear structure function does not saturate at
high rapidities, due to the singularity of the transverse dis-
tribution ρT(r) at r = 0, which makes it non-normalizable.
At large y it continues to grow nearly linearly in y.

These results fully agree with predictions made in [11]
on the basis of the found perturbative solution of the
BFKL fan diagram equation and asymptotic estimates
made in [12].

A completely novel result concerns the gluon density
of the nucleus. At sufficiently high rapidities, greater than
10, the gluon density acquires a form of the soliton wave
in y–ln k space, which, with the growth of y, moves along
the ln k towards greater k preserving its nearly Gaussian
shape. Thus at any finite k the gluon density eventually
goes to zero at high enough k

Finally, we have to stress that all these properties be-
gin to be clearly visible only at very high rapidities and
momenta: y > 10 and k > 100GeV/c with αs = 0.2. With
smaller αs these values grow correspondingly.
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Appendix
Color dipole approach

To compare our BFKL fan diagram equation to that of
Kovchegov [10] we present here a short derivation of (1)
from the color dipole approach, which will make clear the
difference between the two equations.

In the color dipole approach the single scattering term
(2) can be presented in the form

A(y, b) = −2isAT (b)
∫

d2rρ(r)
∫

d2r1n1(r, r1, y)τ(r1),

(54)
where

τ(r1) = −1
2
g4

∫
d2r′G(0, r1, r′)ρN (r′) (55)

and n1(r, r1, y) is the single dipole density at rapidity y
introduced by Mueller; r1 and r are the dipole lengths at
rapidity y and at y = 0 respectively, so that

n1(r, r1, y)y=0 = δ2(r − r1). (56)

(Note that as in [10] our n1 is Mueller’s one divided by
2πr21.)

To introduce the multidipole densities Muller
constructed a generating functional Z(r1, r0, y|u), where
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u = u(ρi, ρf ) is a function of the two dipole endpoints in
the transverse space (which, for brevity, we denote it by a
single symbol ρ). The functional Z satisfies the following
non-linear equation:

Z(r1, r2, y|u) = u(r1, r0)e2yω(r10)

+
g2Nc

8π3

∫ y

0
dy′e2ω(r10)(y−y′)

∫
d2r2

× r210
r212r

2
20
Z(r1, r2, y′|u)Z(r2, r0, y′|u), (57)

where r10 = r1 − r0 etc. and ω(r) is the gluon trajectory
ω(q) in which the momentum q is substituted by r:

ω(r) = −g
2Nc

4π3 ln
r

ε
(58)

with ε the cutoff at small r (in the ultraviolet). The func-
tional Z is normalized according to

Z(r1, r0, y|u)u=1 = 1. (59)

The k-fold inclusive dipole density is given by a k-fold
derivative of D with respect to u at u = 1:

nk(r1, r0, y; ρ1, · · · , ρk) =
1
k!

δkZ

δu(ρ1), · · · , δu(ρk)u=1
. (60)

At this point we make our first comment as to the compar-
ison with [10]. Our form of the functional equation for Z is
the same as in the original pater of Mueller [1] and in [10],
except for a slightly different choice of dipole coordinates
and for the order of arguments in the 2nd Z in the non-
linear term: their form would correspond to Z(r0, r2, y′|u).
Comparing with the BFKL equation for the single dipole
density, one can verify that our choice is better. However,
this point is irrelevant for the following, since in the inter-
action with the nucleus only even functions of r10 appear.

The dipoles are to interact with the nucleus target
with a zero transferred momentum. If the dimension of
the dipole is smaller than the internucleon distance in the
nucleus, then it will interact with a single nucleon as a
whole. This picture lies at the basis of the standard fan
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diagram approach, where each pomeron finally interacts
with a single nucleon. We used precisely this picture in our
derivation of (26) in Sect. 2. In this picture the only trace
of the nucleus will be an additional factor AT (b) multiply-
ing the interaction with the nucleon τ(r) ((54)) at a given
impact parameter b. In [10] a different idea is exploited:
it is assumed that each of the dipoles can interact with
many nucleons. The latter interaction is assumed to have
an eikonal form. So the interaction with the nucleus they
consider is a two-stage one: first the projectile generates
many color dipoles (BFKL fan diagrams) and then each
dipole multiply interacts with the nucleus à la Glauber.
Although technically it is not difficult to take into account
the final eikonalization of the interaction, appropriately
changing the single scattering term τ(r) in (55) and the
following formulas, we do not think it is reasonable. On
the one hand, as we shall see, in the interaction with the
nucleus the densities are considerably damped at large dis-
tances as compared to the usual BFKL behavior. The con-
finement should further restrict their spatial dimensions.
So for a nucleus with a large internucleon distance it does
not seem reasonable to assume simultaneous interaction
of a dipole with two or more nucleons. On the other hand,
should such interactions be really important, one cannot
expect to correctly describe the interaction with the nu-
cleus of a dipole of a given (and fixed) dimension by the
Glauber formula. Note that the expression used in [9] does
not correspond to the BFKL picture for the scattering on
a single nucleon. So we take τ as given by (55) and this
is the main difference between our derivation and that of
[10].

With a chosen τ , the interaction with the nucleus will
be described by densities

νk(r1, r0, y) =
∫ k∏

j=1

(d4ρjτ(ρj)AT (b))

× nk(r1, r0, y; ρ1, · · · , ρk). (61)

Here τ(ρ) = τ(ρf − ρi) depends only on the dipole length
and is given by (55).

Differentiating (57) and using (61) one easily obtains

ν1(r1, r0, y) = AT (b)τ(r10)e2yω(r10)

+
g2Nc

8π3

∫ y

0
dy′e2ω(r10)(y−y′)

∫
d2r2

× r210
r212r

2
20
[ν1(r1, r2, y′) + ν1(r2, r0, y′)] (62)

and for k > 1

νk(r1, r0, y) =
g2Nc

8π3

∫ y

0
dy′e2ω(r10)(y−y′)

∫
d2r2

r210
r212r

2
20

× [νk(r1, r2, y′) + νk(r2, r0, y′)

+
k−1∑
j=1

νj(r1, r2, y′)νk−j(r2, r0, y′)


 . (63)

We suppress the evident dependence on the impact pa-
rameter b.

From the structure of the equations and the form of the
inhomogeneous term it follows that the densities ν(r1, r0, y)
depend only on the initial dipole length r10. As a result,
the two terms separated from the sum over j on the right-
hand side give the same contribution. One then finally
finds the equations

ν1(r10, y) = AT (b)τ(r10)e2yω(r10)

+
g2Nc

4π3

∫ y

0
dy′e2ω(r10)(y−y′)

×
∫

d2r2
r210
r212r

2
20
ν1(r20, y′), (64)

and for k > 1

νk(r10, y) =
g2Nc

4π3

×
∫ y

0
dy′e2ω(r10)(y−y′)

∫
d2r2

r210
r212r

2
20
νk(r20, y′)

+
g2Nc

8π3

∫ y

0
dy′e2ω(r10)(y−y′)

×
∫

d2r2
r210
r212r

2
20

k−1∑
j=1

νj(r12, y′)νk−j(r20, y′).(65)

The total forward scattering amplitude on the nucleus
will be given by the expression (54) in which the single
dipole interaction

∫
d2r1n1(r, r1, y)τ(r1) is substituted by

the sum of all multidipole interactions
∑

k νk(r). Present-
ing the amplitude in the form (10) we have

Φ(r, y) = −
∑
k=1

νk(r, y). (66)

Summing (64) and (65) over k we obtain an equation for
Φ:

Φ(r10, y) = −AT (b)τ(r10)e2yω(r10) +
g2Nc

4π3

×
∫ y

0
dy′e2ω(r10)(y−y′)

∫
d2r2

r210
r212r

2
20
Φ(r20, y′)

− g2Nc

8π3

∫ y

0
dy′e2ω(r10)(y−y′)

∫
d2r2

r210
r212r

2
20

× Φ(r12, y′)Φ(r20, y′). (67)

Comparing this equation with the one derived in [10],
apart from a different inhomogeneous term, which was
discussed earlier, we find a difference in the spatial ar-
guments of the function Φ. Our Φ depends only on one
such argument: the dipole dimension r12. The equivalent
Kovhegov function N depends on two spatial arguments:
it depends not only on the dipole dimension but also on
its center-of-mass coordinate b0, not to be confused with
the impact parameter b which does not enter his equation
at all. The dependence on b0 should be governed by the
inhomogeneous term, which seems to be independent of
b0 ((6a) of [10]). Then the dependence of N on the 2nd
argument seems to disappear and Kovchegov’s equation
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coincides with (67). However, this contradicts his initial
formula ((4) of [10]) in which one integrates over all b0.
Modulo all these (small) inconsistencies and a different in-
homogeneous term, our (67) coincides with Kovchegov’s.
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